K-Dependence Bayesian Classifier Ensemble

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-Dependence Bayesian Classifier Ensemble

To maximize the benefit that can be derived from the information implicit in big data, ensemble methods generate multiple models with sufficient diversity through randomization or perturbation. A k-dependence Bayesian classifier (KDB) is a highly scalable learning algorithm with excellent time and space complexity, along with high expressivity. This paper introduces a new ensemble approach of K...

متن کامل

A Bayesian Framework for Online Classifier Ensemble

We propose a Bayesian framework for recursively estimating the classifier weights in online learning of a classifier ensemble. In contrast with past methods, such as stochastic gradient descent or online boosting, our framework estimates the weights in terms of evolving posterior distributions. For a specified class of loss functions, we show that it is possible to formulate a suitably defined ...

متن کامل

A Bayesian Approach for Online Classifier Ensemble

We propose a Bayesian approach for recursively estimating the classifier weights in online learning of a classifier ensemble. In contrast with past methods, such as stochastic gradient descent or online boosting, our approach estimates the weights by recursively updating its posterior distribution. For a specified class of loss functions, we show that it is possible to formulate a suitably defi...

متن کامل

Learning a Flexible K-Dependence Bayesian Classifier from the Chain Rule of Joint Probability Distribution

As one of the most common types of graphical models, the Bayesian classifier has become an extremely popular approach to dealing with uncertainty and complexity. The scoring functions once proposed and widely used for a Bayesian network are not appropriate for a Bayesian classifier, in which class variable C is considered as a distinguished one. In this paper, we aim to clarify the working mech...

متن کامل

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2017

ISSN: 1099-4300

DOI: 10.3390/e19120651